The Fine Hierarchy of ω -Regular k-Partitions

Victor Selivanov

A.P. Ershov Institute of Informatics Systems Siberian Division Russian Academy of Sciences

Workshop, Turin, January 28, 2015

< ロ > < 同 > < 三 > < 三

In [W79] K. Wagner gave in a sense the finest possible topological classification of regular ω -languages (i.e., of the subsets of X^{ω} for a finite alphabet X recognized by finite automata) known as the Wagner hierarchy. In particular, he completely described the (quotient structure of the) preorder ($\mathcal{R}; \leq_{CA}$) formed by the class \mathcal{R} of regular subsets of X^{ω} and the reducibility by functions continuous in the Cantor topology on X^{ω} (note that in descriptive set theory the *CA*-reducibility is widely known as the Wadge reducibility).

In [S94, S95, S98] the Wagner hierarchy of regular ω -languages was related to the Wadge hierarchy and to the author's fine hierarchy [S95a]. This provided new proofs of results in [W79] and yielded some new results on the Wagner hierarchy. See also alternative algebraic approaches [CP97, CP99, DR06] and [CD09]. The aim of this paper is to generalize this theory from the case of regular ω -regular languages to the case of regular k-partitions of X^{ω} , i.e. k-tuples (A_0, \ldots, A_{k-1}) of pairwise disjoint regular sets satisfying $A_0 \cup \cdots \cup A_{k-1} = X^{\omega}$. Note that the ω -languages are in a bijective correspondence with 2-partitions of X^{ω} .

The structure (R; ≤_{CA}) is almost well-ordered with the order type ω^ω, i.e. there are A_α ∈ R, α < ω^ω, such that A_α <_{CA} A_α ⊕ Ā_α <_{CA} A_β for α < β < ω^ω and any regular set is CA-equivalent to one of the sets A_α, Ā_α, A_α ⊕ Ā_α(α < ω^ω).
 The CA-reducibility coincides on R with the DA-reducibility, i.e. the reducibility by functions computed by deterministic asynchronous finite transducers, and R is closed under the DA-reducibility.

3) Any level $\mathcal{R}_{\alpha} = \{ C \mid C \leq_{DA} A_{\alpha} \}$ of the Wagner hierarchy is decidable.

・ 同 ト ・ ヨ ト ・ ヨ ト

A Muller k-acceptor is a pair (\mathcal{A}, c) where \mathcal{A} is an automaton and $c : C_{\mathcal{A}} \to k$ is a k-partition of $C_{\mathcal{A}} = \{f_{\mathcal{A}}(\xi) \mid \xi \in X^{\omega}\}$ where $f_{\mathcal{A}}(\xi)$ is the set of states which occur infinitely often in the sequence $f(i,\xi) \in Q^{\omega}$. Note that in this paper we consider only deterministic finite automata. Such a k-acceptor recognizes the k-partition $L(\mathcal{A}, c) = c \circ f_{\mathcal{A}}$ where $f_{\mathcal{A}} : X^{\omega} \to C_{\mathcal{A}}$ is the map defined above. We have the following characterization of the ω -regular partitions.

Proposition

A partition $L: X^{\omega} \to k$ is regular iff it is recognized by a Muller *k*-acceptor.

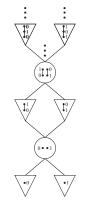
Let $(Q; \leq)$ be a poset. A *Q*-poset is a triple (P, \leq, c) consisting of a finite nonempty poset $(P; \leq)$, $P \subseteq \omega$, and a labeling $c : P \to Q$. A morphism $f : (P, \leq, c) \to (P', \leq', c')$ of *Q*-posets is a monotone function $f : (P; \leq) \to (P'; \leq')$ satisfying $\forall x \in P(c(x) \leq c'(f(x)))$. Let \mathcal{P}_Q , \mathcal{F}_Q and \mathcal{T}_Q denote the sets of all finite *Q*-posets, *Q*-forests and *Q*-trees, respectively. The *h*-preorder \leq_h on \mathcal{P}_Q is defined as follows: $P \leq_h P'$, if there is a morphism from *P* to *P'*. Note that for the particular case $Q = \overline{k}$ of the antichain with *k* elements we obtain the preorders \mathcal{P}_k , \mathcal{F}_k and \mathcal{T}_k .

It is well known that if Q is a wqo then $(\mathcal{F}_Q; \leq_h)$ and $(\mathcal{T}_Q; \leq_h)$ are wqo's. Obviously, $P \subseteq Q$ implies $\mathbb{F}_P \subseteq \mathbb{F}_Q$, and $P \sqsubseteq Q$ (i.e., P is an initial segment of Q) implies $\mathbb{F}_P \sqsubseteq \mathbb{F}_Q$. Define the sequence $\{\mathcal{F}_k(n)\}_{n < \omega}$ of preorders by induction on n as follows: $\mathcal{F}_k(0) = \overline{k}$ and $\mathcal{F}_k(n+1) = \mathcal{F}_{\mathcal{F}_k(n)}$. Identifying the elements i < k of \overline{k} with the corresponding minimal elements s(i)of $\mathcal{F}_k(1)$, we may think that $\mathcal{F}_k(0) \sqsubseteq \mathcal{F}_k(1)$, hence $\mathcal{F}_k(n) \sqsubseteq \mathcal{F}_k(n+1)$ for each $n < \omega$ and $\mathcal{F}_k(\omega) = \bigcup_{n < \omega} \mathcal{F}_k(n)$ is a wqo.

- 4 同 2 4 日 2 4 日 2

The preorders $\mathcal{F}_k(\omega)$, $\mathcal{T}_k(\omega)$ and the set $\mathcal{T}_k^{\sqcup}(\omega)$ of finite joins of elements in $\mathcal{T}_k(\omega)$, play an important role in the study of the FH of k-partitions because they provide convenient naming systems for the levels of this hierarchy (similar to the previous work where \mathcal{F}_k and \mathcal{T}_k where used to name the levels of the DH of k-partitions). Note that $\mathcal{F}_k(1) = \mathcal{F}_k$ and $\mathcal{T}_k(1) = \mathcal{T}_k$. For the FH of ω -regular k-partitions, the structure $\mathcal{T}_k^{\sqcup}(2) = \mathcal{T}_{\mathcal{T}_k}^{\sqcup}$ is especially relevant. For k = 2 it is isomorphic to the structure of levels of the Wagner hierarchy.

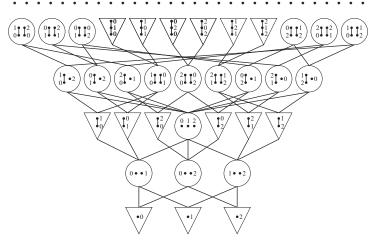
周 ト イ ヨ ト イ ヨ



Picture 1: An initial segment of \mathcal{F}_2 .

<ロ> <回> <回> <回> <回> < 回>

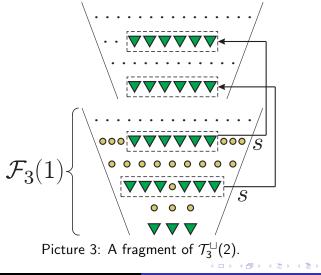
э



Picture 2: An initial segment of \mathcal{F}_3 .

< ロ > < 回 > < 回 > < 回 > < 回 > .

э



æ

Theorem

1. The quotient-posets of $(\mathcal{R}_k; \leq_{CA})$ and of $(\mathcal{R}_k; \leq_{DA})$ are isomorphic to the quotient-poset of $\mathcal{T}_k^{\sqcup}(2)$. 2. The relations \leq_{CA}, \leq_{DA} coincide on \mathcal{R}_k , the same holds for the relations \leq_{CS}, \leq_{DS} . 3. The relations $L(\mathcal{A}, c) \leq_{CA} L(\mathcal{B}, d)$ and $L(\mathcal{A}, c) \leq_{DA} L(\mathcal{B}, d)$ are decidable.

1) Extending and modifying some operations of W. Wadge and A. Andretta on subsets of the Cantor space, we embed $\mathcal{T}_k^{\sqcup}(2)$ into $(\mathcal{R}_k; \leq_{CA})$ and $(\mathcal{R}_k; \leq_{DA})$ (an embedding is induced by $F \mapsto r(F)$).

2) We extend the author FH of sets [S98] to the FH of *k*-partitions over $(\Sigma_1^0 \cap \mathcal{R}, \Sigma_2^0 \cap \mathcal{R})$ in such a way that r(F) is *CA*-complete in $\Sigma(F)$ and *DA*-complete in $\Sigma\mathcal{R}(F)$.

3) Relate to any Muller *k*-acceptor $\mathcal{A} = (\mathcal{A}, c)$ the structure $(C_{\mathcal{A}}; \leq_0, \leq_1, c)$ where $C_{\mathcal{A}}$ is the set of cycles of $\mathcal{A}, D \leq_0 E$ iff some state in D is reachable in the graph of the automaton \mathcal{A} from some state in E, and $D \leq_1 E$ iff $D \subseteq E$.

・ロト ・同ト ・ヨト ・ヨト

4) The structure (C_A; ≤₀, ≤₁, c) may be identified with some P_A ∈ P_k(2).
5) Using the known facts [S98] that (Σ₁⁰ ∩ R, Σ₂⁰ ∩ R) have the reduction property conclude that ΣR(P_A) = ΣR_{red}(F_A) where F_A ∈ T_k[⊥](2) is the natural unfolding of P_A.
6) Check that L(A, c) is CA-complete in Σ(F_A) and DA-complete in ΣR(F_A) and conclude that L(A, c) ≡_{DA} r(F_A).

So far, our results for ω -regular partitions generalized the corresponding results for ω -regular languages. Now we show that the structure of ω -regular languages is indeed much simpler than that of ω -regular k-partitions for k > 2. Recall that *first-order theory FO(A)* of a structure A of signature σ is the set of first-order σ -sentences of signature which are true in A. Using the main result above, we show in [KS07]:

Theorem

For any $k \ge 3$, $FO(\mathcal{T}_k^{\sqcup}(2); \le_h)$ is undecidable and, moreover, is computably isomorphic to the first-order arithmetic $FO(\omega; +, \cdot)$. In contrast, $FO(\mathcal{T}_2^{\sqcup}(2); \le_h)$ is decidable.

Also, for $k \ge 3$ the automorphism group of $(\mathcal{T}_k^{\sqcup}(2); \le_h)$ is isomorphic to the symmetric group on k elements.

- **O**. Carton and D. Perrin, Chains and superchains for ω -rational sets, automata and semigroups, *International Journal of Algebra and Computation* 7 (1997) 673–695.
- O. Carton and D. Perrin, The Wagner hierarchy of ω-rational sets, International Journal of Algebra and Computation 9 (1999) 673–695.
- J. Duparc and M. Riss, The missing link for ω-rational sets, automata, and semigroups, *International Journal of Algebra and Computation* 16 (2006) 161–185.
- J. Cabessa, J. Duparc. A Game Theoretical Approach to The Algebraic Counterpart of The Wagner Hierarchy. RAIRO-Theor. Inf. Appl., 43(3), 2009, 443–515.

(日) (同) (日) (日)

- O.V. Kudinov, V.L. Selivanov. Undecidability in the Homomorphic Quasiorder of Finite Labelled Forests. *Journal of Logic and Computation*, 17 (2007), 1135–1151.
- V.L. Selivanov, Fine hierarchy of regular ω-languages, Preprint N 14, 1994, the University of Heidelberg, Chair of Mathematical Logic, 13 pp.
- V.L. Selivanov, Fine hierarchy of regular ω-languages, Proc. of TAPSOFT-1995, Lecture Notes in Computer Science, v. 915, Springer: Berlin 1995, p. 277–287.
- V.L. Selivanov Fine hierarchies and Boolean terms, *Journal of Symbolic Logic* 60 (1995) 289–317.

(日) (同) (日) (日)

- V.L. Selivanov, Fine hierarchy of regular ω-languages, *Theoretical Computer Science* 191 (1998) 37–59.
- V.L. Selivanov. Classifying ω-regular partitions. Preproceedings of LATA-2007, Universitat Rovira i Virgili Report Series, 35/07, 529–540.
- V.L. Selivanov. A fine hierarchy of ω-regular *k*-partitions. LNCS 6735, 260-269. 529–540.
- K. Wagner, On ω-regular sets, Information and Control 43 (1979) 123–177.