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Complexity of finite computations

Complexity of finite computations is often measured by the
amount of time or space needed to accept a word of length n.

P = DTIME(Pol)

NP = NTIME(Pol)

P = NP ?
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Languages of finite words accepted by different
finite machines

A regular language (accepted by a finite automaton) is in
the class DTIME(n).
A 1-counter language or a context-free language is in the
class DTIME (n3).
There are recursive languages, accepted by Turing
machines, in the class DTIME(2n)\ P.
There are recursive languages, accepted by Turing
machines, which are non elementary. For instance Büchi’s
procedure (1962) to decide whether a monadic second
order formula of size n of S1S is true in the structure (ω,<)

might run in time 22..
2n︸ ︷︷ ︸

O(n)

, Moreover Meyer (1975) proved

that one cannot essentially improve this result: the
monadic second order theory of (ω,<) is not elementary
recursive.
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Acceptance of infinite words

In the sixties,
Acceptance of infinite words by finite automata was firstly
considered by Büchi in order to study the decidability of
the monadic second order theory S1S of one successor
over the integers.
Since then ω-regular languages accepted by Büchi
automata and their extensions have been much studied
and used for specification and verification of non
terminating systems.
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Büchi acceptance condition

An automaton A reading infinite words over the alphabet Σ is
equipped with a finite set of states K and a set of final states
F ⊆ K .

A run of A reading an infinite word σ ∈ Σω is said to be
accepting iff there is some state qf ∈ F appearing infinitely
often during the reading of σ.

An infinite word σ ∈ Σω is accepted by A if there is (at least )
one accepting run of A on σ.

An ω-language L ⊆ Σω is accepted by A if it is the set of infinite
words σ ∈ Σω accepted by A.

Olivier Finkel Logic, Complexity, and Infinite Computations



Context free or regular ω-languages

( Cohen and Gold 1977; Linna 1976 )
Let L ⊆ Σω. Then the following propositions are equivalent :

L is accepted by a Büchi pushdown automaton.
L is accepted by a Muller pushdown automaton.
L =

⋃
1≤i≤n Ui .Vω

i ,
for some context free finitary languages Ui and Vi .
L is a context free ω-language.

A similar theorem holds if we:
• omit the pushdown stack and replace context free by regular,
• or replace pushdown and context-free by 1-counter.
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Complexity of ω-languages

The question naturally arises of the complexity of ω-languages
accepted by various kinds of automata.

A way to study the complexity of ω-languages is to consider
their topological complexity.
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Topology on Σω

The natural prefix metric on the set Σω of ω-words over Σ is
defined as follows:

For u, v ∈ Σω and u 6= v let

δ(u, v) = 2−n

where n is the least integer such that:

the (n + 1)st letter of u is different from the (n + 1)st letter of v .

This metric induces on Σω the usual Cantor topology for which :

open subsets of Σω are in the form W .Σω, where W ⊆ Σ?.
closed subsets of Σω are complements of open subsets of
Σω.
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Borel Hierarchy

Σ0
1 is the class of open subsets of Σω,

Π0
1 is the class of closed subsets of Σω,

for any integer n ≥ 1:

Σ0
n+1 is the class of countable unions of Π0

n-subsets of Σω.

Π0
n+1 is the class of countable intersections of Σ0

n-subsets of
Σω.

Π0
n+1 is also the class of complements of Σ0

n+1-subsets of Σω.
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Borel Hierarchy

The Borel hierarchy is also defined for levels indexed by
countable ordinals.

For any countable ordinal α ≥ 2:

Σ0
α is the class of countable unions of subsets of Σω in

⋃
γ<α Π0

γ .

Π0
α is the class of complements of Σ0

α-sets

∆0
α=Π0

α ∩ Σ0
α.
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Borel Hierarchy

Below an arrow→ represents a strict inclusion between Borel
classes.

Π0
1 Π0

α Π0
α+1

↗ ↘ ↗ ↗ ↘ ↗

∆0
1 ∆0

2 · · · · · · ∆0
α ∆0

α+1 · · ·

↘ ↗ ↘ ↘ ↗ ↘

Σ0
1 Σ0

α Σ0
α+1

A set X ⊆ Σω is a Borel set iff it is in
⋃
α<ω1

Σ0
α =

⋃
α<ω1

Π0
α

where ω1 is the first uncountable ordinal.

Olivier Finkel Logic, Complexity, and Infinite Computations



Beyond the Borel Hierarchy

There are some subsets of Σω which are not Borel. Beyond the
Borel hierarchy is the projective hierarchy.

The class of Borel subsets of Σω is strictly included in the class
Σ1

1 of analytic sets which are obtained by projection of Borel
sets.

A set E ⊆ Σω is in the class Σ1
1 iff :

∃F ⊆ (Σ× {0,1})ω such that F is Π0
2 and

E is the projection of F onto Σω

A set E ⊆ Σω is in the class Π1
1 iff Σω − E is in Σ1

1.

Suslin’s Theorem states that : Borel sets = ∆1
1 = Σ1

1 ∩ Π1
1

Olivier Finkel Logic, Complexity, and Infinite Computations



Complete Sets

A set E ⊆ Σω is C-complete, where C is a Borel class Σ0
α or Π0

α

or the class Σ1
1, for reduction by continuous functions iff :

∀F ⊆ Γω F ∈ C iff :

∃f continuous, f : Γω → Σω such that F = f−1(E)

(x ∈ F ↔ f (x) ∈ E).

Example : {σ ∈ {0,1}ω | ∃∞i σ(i) = 1} is a Π0
2-complete-set

and it is accepted by a deterministic Büchi automaton.
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More Examples of Complete Sets

Examples :

{σ ∈ {0,1}ω | ∃i σ(i) = 1} is a Σ0
1-complete-set.

{σ ∈ {0,1}ω | ∀i σ(i) = 1} = {1ω} is a Π0
1-complete-set.

{σ ∈ {0,1}ω | ∃<∞i σ(i) = 1} is a Σ0
2-complete-set.

All these ω-languages are ω-regular.
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Complexity of ω-languages of deterministic
machines

deterministic finite automata (Landweber 1969)
ω-regular languages accepted by deterministic Büchi
automata are Π0

2-sets.
ω-regular languages are boolean combinations of Π0

2-sets
hence ∆0

3-sets.

deterministic Turing machines
ω-languages accepted by deterministic Büchi Turing
machines are Π0

2-sets.
ω-languages accepted by deterministic Muller Turing
machines are boolean combinations of Π0

2-sets hence
∆0

3-sets.
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Complexity of ω-Languages of Non Deterministic
Turing Machines

Non deterministic Büchi or Muller Turing machines accept
effective analytic sets (Staiger). The class Effective-Σ1

1 of
effective analytic sets is obtained as the class of projections
of arithmetical sets and Effective-Σ1

1 ( Σ1
1.

Let ωCK
1 be the first non recursive ordinal.

Topological Complexity of Effective Analytic Sets

There are some Σ1
1-complete sets in Effective-Σ1

1.
For every non null ordinal α < ωCK

1 , there exists some
Σ0
α-complete and some Π0

α-complete ω-languages in the
class Effective-Σ1

1.
( Kechris, Marker and Sami 1989)
The supremum of the set of Borel ranks of
Effective-Σ1

1-sets is a countable ordinal γ1
2 > ωCK

1 .
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Topological complexity of 1-counter or context
free ω-languages

Let 1− CLω be the class of real-time 1-counter
ω-languages.

Let C be a class of ω-languages such that:

1− CLω ⊆ C ⊆ Effective-Σ1
1.

(a) (F. and Ressayre 2003) There are some Σ1
1-complete sets

in the class C.
(b) (F. 2005) The Borel hierarchy of the class C is equal to

the Borel hierarchy of the class Effective-Σ1
1.

(c) γ1
2 is the supremum of the set of Borel ranks of
ω-languages in the class C.

(d) For every non null ordinal α < ωCK
1 , there exists some

Σ0
α-complete and some Π0

α-complete ω-languages in the
class C.
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Topological complexity of 1-counter or context
free ω-languages

Theorem (F. 2005)
The Wadge hierarchy of the class of ω-languages accepted by
real-time 1-counter Büchi automata is equal to the Wadge
hierarchy of the class of ω-languages of Büchi Turing machines.
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Sketch of the proof

It is well known that every Turing machine can be simulated by
a (non real time) 2-counter automaton.

We denote BCL(2)ω the class of ω-languages accepted by
Büchi 2-counter automata.

Thus the topological complexity of ω-languages in the class
BCL(2)ω is equal to the topological complexity of ω-languages
accepted by Büchi Turing machines.
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Sketch of the proof

First, from a 2-counter automaton A accepting an ω-language
L ⊆ Xω, we construct a real-time 8-counter Büchi automaton B
accepting an ω-language of the same topological complexity.

First, we add a storage type called a queue to a 2-counter
Büchi automaton in order to read ω-words in real-time.

Then the queue can be simulated by

two pushdown stacks or
four counters,
because each pushdown stack may be simulated by two
counters.

Olivier Finkel Logic, Complexity, and Infinite Computations



Sketch of the proof

This simulation is not done in real-time but one can bound the
number of transitions needed to simulate the queue. This
allows to pad the strings in L with enough extra letters so that
the new language θS(L) will be read in real-time by a 8-counter
Büchi automaton.

The padding is obtained via the function θS : Xω → (X ∪ {E})ω,
where S = (3k)3, with k = card(X ) + 2, and for all x ∈ Xω:

θS(x) = x(1).ES.x(2).ES2
.x(3).ES3

.x(4) . . . x(n).ESn
.x(n+1).ESn+1

. . .

The ω-language θS(L) is accepted in real time by a Büchi
automaton with 2 + 4 + 2 = 8 counters.
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Sketch of the proof

The next step is to simulate a real-time 8-counter Büchi
automaton A, by a real-time 1-counter Büchi automaton B.

The eight first prime numbers are 2; 3; 5; 7; 11; 13; 17; 19.

We code the content (c1, c2, . . . , c8) of eight counters by the
product 2c1 × 3c2 × . . .× (17)c7 × (19)c8 .

Then we code ω-words in Y = X ∪ {E} by ω-words in
Z = Y ∪ {A,B,0}.

The new ω-words will have a special shape which will allow
the propagation of the values of the counters of A.
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Sketch of the proof

The product of the eight first prime numbers is:

K = 2× 3× 5× 7× 11× 13× 17× 19 = 9699690

An ω-word x ∈ Yω is coded by the ω-word

h(x) = A.0K .x(1).B.0K 2
.A.0K 2

.x(2).B. . . .B.0K n
.A.0K n

.x(n).B . . .

If L(A) ⊆ Yω is accepted by a real time 8-counter Büchi
automaton A, then one can construct from A a 1-counter Büchi
automaton B, reading words over Y ∪ {A,B,0}, such that:

∀x ∈ Yω h(x) ∈ L(B)←→ x ∈ L(A)
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Sketch of the proof

The mapping h : Yω → (Y ∪ {A,B,0})ω is continuous.

The complement h(Yω)− of the ω-language h(Yω) is an open
subset of (Y ∪ {A,B,0})ω and is accepted by a real time
1-counter automaton.

Thus the ω-language

h(L(A)) ∪ h(Yω)− = L(B) ∪ h(Yω)−

is in the class BCL(1)ω and it has the same topological
complexity as the ω-language L(A).
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Decision Problems

Castro and Cucker proved (1989) that many decision problems
about ω-languages of Turing machines are highly undecidable,
i.e.

located beyond the arithmetical hierarchy.

From their results and from the previous constructions, we can
show that some decision problems about ω-languages of
1-counter automata are also highly undecidable.
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Some Decision Problems

Let C1 and C2 be two 1-counter automata over the alphabet Σ.
Can we decide whether

L(C1) is empty ?
L(C1) is infinite ?
L(C1) = Σω ?
L(C1) = L(C2) ?
L(C1) ⊆ L(C2) ?
L(C1) is unambiguous ?
L(C1) is Borel ?
. . .
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Some differences between Turing machines and
1-counter automata

Theorem (Castro and Cucker 1989)
The non-emptiness problem and the infiniteness problem for
ω-languages of Turing machines are Σ1

1-complete.

Theorem (Cohen and Gold 1977)
The non-emptiness problem and the infiniteness problem for
ω-languages of 1-counter Büchi automata are decidable.

Proof. An ω-language L is accepted by a 1-counter Büchi
automaton iff it is of the form L =

⋃
1≤i≤n Ui .Vω

i , for some
1-counter finitary languages Ui and Vi . The emptiness problem
for 1-counter (and even context-free) finitary languages is
decidable.
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Some similarities

Theorem (Castro and Cucker 1989; F. 2009 )

The following problems are Π1
2-complete for ω-languages of

Turing machines and for ω-languages of 1-counter Büchi
automata:

1 The universality problem.
2 The inclusion problem.
3 The equivalence problem.
4 The cofiniteness problem.
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Some undecidable problems higher in the
analytical hierarchy

Some decisions problems for ω-languages of Turing machines
and for ω-languages of 1-counter Büchi automata are located

above the two first levels of the analytical hierarchy.

We can use Set Theory to obtain such lower bounds of
decision problems.
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Perfect Sets, Thin Sets

Definition
Let P ⊆ Σω, where Σ is a finite alphabet having at least two
letters. The set P is a perfect subset of Σω iff it is a non-empty
closed set which has no isolated points.

A perfect subset of Σω has cardinality 2ℵ0 .

Definition
A set X ⊆ Σω is said to be thin iff it contains no perfect subset.

Theorem ( Souslin )
(ZFC) An analytic set X ⊆ Σω is either countable or contains a
perfect subset. Thus every thin analytic set is countable.

This result is not true for co-analytic sets in ZFC. We need
additional axioms like analytic determinacy.
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The constructible sets

The class L of constructible sets in a model V of ZF is defined
by

L =
⋃
α∈ON

L(α)

where the sets L(α) are constructed by induction as follows:

1 L(0) = ∅
2 L(α) =

⋃
β<α L(β), for α a limit ordinal, and

3 L(α + 1) is the set of subsets of L(α) which are definable
from a finite number of elements of L(α) by a first-order
formula relativized to L(α).

If V is a model of ZF and L is the class of constructible sets of
V, then the class L forms a model of ZFC + CH. Notice that the
axiom (V=L) means “every set is constructible” and that it is
consistent with ZFC.
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The Largest Thin Effective Coanalytic Set

Theorem (Kechris 1975; Guaspari, Sacks)
(ZFC) Let Σ be a finite alphabet having at least two letters.
There exists a thin Π1

1-set C1(Σω) ⊆ Σω which contains every
thin, Π1

1-subset of Σω. It is called the largest thin Π1
1-set in Σω.

Theorem (Kechris 1975; Guaspari, Sacks)

(ZFC) The cardinal of the largest thin Π1
1-set in Σω is equal to

the cardinal of ωL
1 .

This means that in a given model V of ZFC the cardinal of the
largest thin Π1

1-set in Σω is equal to the cardinal in V of the
ordinal ωL

1 which plays the role of the cardinal ℵ1 in the inner
model L of constructible sets of V.

ωL
1 ≤ ω1
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The Largest Thin Effective Coanalytic Set

Theorem

1 (ZFC + V=L) The largest thin Π1
1-set in Σω is not a Borel

set.
2 (ZFC + ωL

1 < ω1) The largest thin Π1
1-set in Σω is countable,

hence a Σ0
2-set.

Proof. In (ZFC + V=L) it holds that ω1 = ωL
1 . Thus the set

C1(Σω) has cardinal ω1 and it is not countable. But it is thin,
hence has no perfect subset. Thus it cannot be a Borel set
because Borel sets have the perfect set property.

(ZFC + ωL
1 < ω1) the ordinal ωL

1 is countable so the set C1(Σω)
is countable. It is a countable union of singletons, and each
singleton is a closed set. Thus C1(Σω) is a countable union of
closed sets, i.e. a Σ0

2-set.
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From effective coanalytic sets to 1-counter
automata

The complement of C1(Σω) ⊆ Σω is an effective analytic set
accepted by a Büchi Turing machine T .

We can now use previous constructions to obtain:

A 2-counter Büchi automaton A1,
A real time 8-counter Büchi automaton A2,
A real time 1-counter Büchi automaton A3,

such that L(T ), L(A1), L(A2), and L(A3), all have the same
toplogical complexity.
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The Topological complexity of a 1-counter
ω-language depends on the models of ZFC

Theorem ( F. 2009 )
There exists a 1-counter Büchi automaton A such that the
topological complexity of the ω-language L(A) is not
determined by the axiomatic system ZFC.

1 (ZFC + V=L). The ω-language L(A) is a true analytic
set.

2 (ZFC + ωL
1 < ω1). The ω-language L(A) is a Π0

2-set.
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Infinitary rational relations

( Gire 1981, Gire and Nivat 1984 )
A set R ⊆ Σω × Γω is an infinitary rational relation iff one the
two following equivalent conditions holds :

R is recognized by a Büchi transducer T :

R is the set of pairs (u, v) ∈ Σω × Γω such that u is the
input word and v is the output word of a successful
computation of T .
R is accepted by a 2-tape Büchi automaton A with two
asynchronous reading heads.
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Similar results for 2-tape Büchi automata

Infinitary rational relations have same topological complexity as
ω-languages accepted by real-time 1-counter Büchi automata
or by Büchi Turing machines (i.e. effective analytic sets). And:

Theorem ( F. 2009 )
The topological complexity of an ω-language accepted by a
2-tape Büchi automaton is not determined by the axiomatic
system ZFC. Indeed there is a 2-tape Büchi automaton B such
that:

1 There is a model V1 of ZFC in which the ω-language L(B)
is an analytic but non Borel set.

2 There is a model V2 of ZFC in which the ω-language L(B)
is a Π0

2-set.
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PROGRAMS IN COMPUTER SCIENCE

Some programs make a computation, get a result, and
then stop. Other ones have to maintain the good behaviour
of a system:

Operating systems (Internet)
safety systems (power plant, . . . )
aircraft autopilot

In particular, these systems are in relation with an
environment, and must have the “good” response to any
changes of the environment.
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INFINITE GAMES

A system in relation with an environment may be specified by
an infinite game between two players.

Two players:
Player 1 : the computer program
Player 2 : the environment

The possible actions of the players are represented by
letters of a finite alphabet A.
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INFINITE PLAY

The two players compose an infinite word over the
alphabet A:

Player 1 : a1 a3 a5
↘ ↗ ↘ ↗ ↘ · · ·

Player 2 : a2 a4 a6

The infinite word a1.a2.a3 . . . represents the infinite
behaviour of the system.

A good behaviour is represented by a set of infinite words
L ⊆ Aω called the winning set for Player 1.

The above game, with perfect information, is a Gale-Stewart
game G(L).
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WINNING STRATEGIES

A strategy for Player 1 is a mapping f : (A2)? −→ A. Player 1
follows the strategy f iff ∀n ≥ 1: a2n+1 = f (a1a2 . . . a2n).

The strategy f is winning for Player 1 if it ensures a good
behaviour of the system, i.e. such that : the infinite word
written by the two players belongs to the winning set L:

a1.a2.a3 . . . ∈ L

A winning strategy for Player 2 is a strategy for Player 2
which ensures that a1.a2.a3 . . . /∈ L.

A Gale-Stewart game G(L) is determined iff one of the two
players has a winning strategy.
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WINNING STRATEGIES

The important problems to solve in practice are:

(1) Is the game G(L) determined ?
(2) Which player has a winning strategy ?
(3) If Player 1 has a winning strategy, can we effectively

construct this winning strategy ? Is it computable ?
(4) What is the complexity of this construction ? What are the

necessary amounts of time and space ?
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COMPLEXITY OF WINNING SETS

The winning set for Player 1 is often given as the set of infinite
behaviours which satisfy a logical formula.

It is also often given as the set of infinite words accepted by a
finite automaton, a one-counter automaton, a pushdown
automaton, . . . with a Büchi acceptance condition . . .
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Regular winning sets

Büchi and Landweber solved the famous Church’s Problem
posed in 1957, Rabin gave an alternative solution:

Theorem (Büchi-Landweber 1969; Rabin 1972)
If L ⊆ Σω is a regular ω-language then:

The game G(L) is determined.
One can decide which Player has a winning strategy.
On can construct effectively a winning strategy given by a
finite state transducer.
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Deterministic context free winning sets

Walukiewicz extended this to the case of deterministic context
free winning sets:

Theorem (Walukiewicz 1996)
If L ⊆ Σω is a deterministic context free ω-language then:

The game G(L) is determined.
One can decide which Player has a winning strategy.
On can construct effectively a winning strategy given by a
pushdown transducer.

Further extension to deterministic higher-order pushdown
automata ([Cachat 2003], [Carayol, Hagues, Meyer, Ong, Serre
2008])
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The question of the determinacy

The determinacy of regular or deterministic context-free games
follows from the determinacy of Borel games. (Martin 1975).

The question remained open for non-deterministic pushdown
automata, one-counter automata, 2-tape automata: these
automata accept non-Borel sets.
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The (effective) analytic determinacy

Theorem (Martin 1970 and Harrington 1978)
The effective analytic determinacy is equivalent to the existence
of a particular real called 0].
The existence of the real 0] is known in set theory to be a large
cardinal assumption, and is not provable in ZFC.
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The real 0]

A set of ordinals C is a set of indiscernibles in the constructible
universe L iff:

• For each first-order formula ϕ(x1, . . . , xn) in the language of
set theory,

• For all finite sequences αi1 < αi2 < . . . < αin and
βi1 < βi2 < . . . < βin of ordinals in C, it holds that:

L |= ϕ(αi1 , αi2 , . . . , αin )⇐⇒ L |= ϕ(βi1 , βi2 , . . . , βin )
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The real 0]

The existence of the real 0] in a model V of ZFC is equivalent to
the existence of an uncountable set of indiscernible ordinals in
the constructible universe L.
(The existence of such a set was proven firstly by Silver from
the existence of a Ramsey cardinal in 1966)

• The real 0] is the code in 2ω of a set of integers, the set of
Gödel numbers of formulas which are satisfied by an
uncountable set of indiscernibles ordinals in L.

• The existence of the real 0] is equivalent to the existence of a
non-trivial elementary embedding j : L→ L.
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The context-free determinacy

Theorem (F. 2011)
The determinacy of games G(L), where L is accepted by a
real-time 1-counter Büchi automaton, is equivalent to the
effective analytic determinacy, and thus it is not provable in
ZFC.
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Sketch of the proof

We start from an effective analytic set L(T ) accepted by a
Büchi Turing machine T .

Using some modifications of the previous constructions, we
construct a real time 1-counter Büchi automaton A such that
Player 1 (resp. Player 2) has a winning strategy in G(L(T )) if
and only if that Player 1 (resp. Player 2) has a winning strategy
in the game G(L(A)).

The game G(L(T )) is determined iff the game G(L(A)) is
determined.
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The context-free Wadge determinacy

Theorem (F. 2011)
The determinacy of Wadge games W (L1,L2), where L1 and L2
are accepted by real-time 1-counter Büchi automata, is
equivalent to the effective analytic determinacy, and thus it is
not provable in ZFC.
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Games with non-recursive strategies when they
exist

Theorem ( F. 2011 )
There exists a 1-counter Büchi automaton A such that:

(1) There is a model V1 of ZFC in which Player 1 has a winning
strategy σ in the game G(L(A)). But σ cannot be recursive
and not even hyperarithmetical.

(2) There is a model V2 of ZFC in which the game G(L(A)) is
not determined.

Moreover these are the only two possibilities: there are no
models of ZFC in which Player 2 has a winning strategy.
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Games with non-recursive strategies when they
exist

Theorem ( F. 2013 )
There exists a real-time 1-counter Büchi automaton A such that
the ω-language L(A) is an arithmetical ∆0

3-set and such that
Player 2 has a winning strategy in the game G(L(A)) but has
no hyperarithmetical winning strategies in this game.
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One cannot decide who wins a 1-counter game

Theorem ( F. 2013 )
There exists a recursive sequence of real time 1-counter Büchi
automata An, n ≥ 1, such that all games G(L(An)) are
determined. But it is Π1

2-complete (hence highly undecidable) to
determine whether Player 1 has a winning strategy in the game
G(L(An)).
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Games specified by 2-tape Büchi automata

The two players compose an infinite word over the
alphabet A× B:

Player 1 : (a1,b1) (a3,b3) (a5,b5)
↘ ↗ ↘ ↗ ↘ · · ·

Player 2 : (a2,b2) (a4,b4)

The infinite word (a1,b1).(a2,b2).(a3,b3) . . . ∈ (A× B)ω

represents the infinite behaviour of the system.

A good behaviour is represented by a set of infinite words
L(A) ⊆ (A× B)ω accepted by a 2-tape Büchi automaton A.
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The question of the determinacy

Theorem (F. 2012)
The determinacy of games G(L), where L is accepted by a
2-tape (asynchronous) Büchi automaton, is equivalent to the
effective analytic determinacy, and thus it is not provable in
ZFC.
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Sketch of the proof

We start from an ω-language accepted by a a real time
1-counter Büchi automaton A.

We construct, from A, a 2-tape Büchi automaton B such that
Player 1 (resp. Player 2) has a winning strategy in G(L(A)) if
and only if Player 1 (resp. Player 2) has a winning strategy in
the game G(L(B)).

The game G(L(A)) is determined iff the game G(L(B)) is
determined.
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Games with non-recursive strategies

Theorem ( F. 2012 )
There exists a 2-tape Büchi automaton A such that:

(1) There is a model V1 of ZFC in which Player 1 has a winning
strategy σ in the game G(L(A)). But σ cannot be recursive
and not even hyperarithmetical.

(2) There is a model V2 of ZFC in which the game G(L(A)) is
not determined.
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The determinacy of Wadge games

Theorem (F. 2012)
The determinacy of Wadge games W (L1,L2), where L1,L2 are
accepted by 2-tape (asynchronous) Büchi automata, is
equivalent to the effective analytic determinacy, and thus it is
not provable in ZFC.
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Games of maximum strength of determinacy

Theorem ( F. 2012 )
There exists a 1-counter Büchi automaton A] (resp., 2-tape
Büchi automaton B]) such that:
The game G(L(A])) (resp., G(L(B]))) is determined if and only
if the effective analytic determinacy holds.
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A transfinite sequence of 2-tape Büchi automata

A transfinite sequence of games specified by 2-tape Büchi
automata with increasing strength of determinacy.

Theorem ( F. 2012 )
There is a transfinite sequence of 2-tape Büchi automata
(Aα)α<ωCK

1
, indexed by recursive ordinals, s.t.:

∀α < β < ωCK
1 [ Det(G(L(Aβ))) =⇒ Det(G(L(Aα))) ]

but the converse is not true:

For each recursive ordinal α there is a model Vα of ZFC such
that in this model the game G(L(Aβ)) is determined iff β < α.
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Open Questions

Theorem [ F. (2005)]
There are ω-languages accepted by Büchi 1-counter
automata of every Borel rank of an effective analytic set.

Theorem [ Kechris, Marker, and Sami (1989)]
The supremum of the set of Borel ranks of effective
analytic sets is the ordinal γ1

2 > ωCK
1 .

Every ω-language accepted by a Büchi 1-counter automaton
can be written as a finite union L =

⋃
1≤i≤n Ui .Vω

i , where for
each integer i , Ui and Vi are 1-counter languages.

Conjecture From these results it seems plausible that there
exist some ω-powers of languages accepted by 1-counter
automata which have Borel ranks up to the ordinal γ1

2 ,
although these languages are located at the very low level
in the complexity hierarchy of finitary languages.
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The ordinal γ1
2 may depend on set theoretic axioms

The ordinal γ1
2 is the least basis for subsets of ω1 which

are Π1
2 in the codes.

It is the least ordinal such that whenever X ⊆ ω1, X 6= ∅, and
X̂ ⊆WO is Π1

2, there is β ∈ X such that β < γ1
2 .

The least ordinal which is not a ∆1
n-ordinal is denoted δ1

n .

Theorem (Kechris, Marker and Sami 1989)

(ZFC) δ1
2 < γ1

2

(V = L) γ1
2 = δ1

3

(Π1
1-Determinacy) γ1

2 < δ1
3

Are there effective analytic sets of every Borel rank α < γ1
2 ?
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Open Questions

There is a 1-counter ω-language L(A) which is Borel in some
model of ZFC and non Borel in some other model of ZFC.

But

L(A) =
⋃

1≤i≤n

Ui .Vω
i

for some finitary 1-counter-languages Ui and Vi .

When L(A) is non Borel then at least one ω-power
language Vω

i is non Borel.

Are all Vω
i Borel in the other case ?

Does the topological complexity of the ω-power of a finitary
1-counter-language depend on the model of ZFC?
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Open Questions

Determine the Wadge hierarchy of deterministic infinitary
rational relations.

Determine the Wadge hierarchy of ω-languages accepted
by non-deterministic 1-counter automata without
zero-test.

Study the effectivity of the Wadge hierarchy of
deterministic context-free ω-languages, of some of its
restrictions, of ω-languages of deterministic Petri nets.
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A transfinite sequence of 2-tape Büchi automata

The recursive ordinals form an initial segment of the countable
ordinals.

The ordinals ω, ωω, ωω
ω
, . . . ,

ε0 = lim
n
ωω

..
.ω︸ ︷︷ ︸

n

are recursive.

Olivier Finkel Logic, Complexity, and Infinite Computations



Infinitary rational relations

A set R ⊆ Σω × Γω is an infinitary rational relation iff it is
generated from :

the empty set ∅, and
singletons {(a, λ)}, {(λ,b)}, a ∈ Σ,b ∈ Γ, where λ is the
empty word.

by operations of
finite union,
concatenation product : (u1, v1) · (u2, v2) = (u1 · u2, v1 · v2)

star operation,
operation R → Rω over finitary rational relations.

Notice that an infinitary rational relation R ⊆ Σω × Γω may be
seen as an ω-language R ⊆ (Σ× Γ)ω over the alphabet Σ× Γ.
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The Analytical Hierarchy

Let k , l > 0 be some integers and R ⊆ Fk × Nl , where F is the
set of all mappings from N into N.
The relation R is said to be recursive if its characteristic
function is recursive.

A subset R of Nl is analytical if it is recursive or if there exists a
recursive set S ⊆ Fm × Nn, with m ≥ 0 and n ≥ l , such that
(x1, . . . , xl) is in R iff

(Q1s1)(Q2s2) . . . (Qm+n−lsm+n−l)S(f1, . . . , fm, x1, . . . , xn)

where Qi is either ∀ or ∃ for 1 ≤ i ≤ m + n − l , and where
s1, . . . , sm+n−l are f1, . . . , fm, xl+1, . . . , xn in some order.

(Q1s1)(Q2s2) . . . (Qm+n−lsm+n−l)S(f1, . . . , fm, x1, . . . , xn) is
called a predicate form for R.
The reduced prefix is the sequence of quantifiers obtained by
suppressing the quantifiers of type 0 from the prefix.
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The Analytical Hierarchy

For n > 0, a Σ1
n-prefix is one whose reduced prefix begins with

∃1 and has n − 1 alternations of quantifiers. For n > 0, a
Π1

n-prefix is one whose reduced prefix begins with ∀1 and has
n − 1 alternations of quantifiers.

A Π1
0-prefix or Σ1

0-prefix is one whose reduced prefix is empty.

A predicate form is a Σ1
n (Π1

n)-form if it has a Σ1
n (Π1

n)-prefix.

The class of sets in Nl which can be expressed in Σ1
n-form

(respectively, Π1
n-form) is denoted by Σ1

n (respectively, Π1
n).

The class Σ1
0 = Π1

0 is the class of arithmetical sets.
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